
§ 13.3–Double Integrals in Polar
Coordinates

This lesson covers the material in Section 13.3

Read Lesson 20 in the Study Guide and Section
13.3 in the text.

Continue working on online homework.

Try: 7, 9, 13, 17, 19, 21, 23, 27, 31, 37, 43
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Polar Coordinates
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x = r cos θ y = r sin θ

x2 + y 2 = r 2

tan θ =
y

x
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Polar Rectangles
A polar rectangle R is a region in the xy−plane
given by

R = {(r , θ) | a ≤ r ≤ b, α ≤ θ ≤ β}
where (r , θ) are polar coordinates.
If f (x , y) is continuous on a polar rectangle R , and
if β − α ≤ 2π, then the double integral of f over R
can be evaluated as

∫∫

R

f (x , y) dA =

∫ β

α

∫ b

a
f (r cos θ, r sin θ)r dr dθ

Why?
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Integration Factor
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Compare areas: ∆θ · ∆r vs.

π(r 2
2 − r 2

1 )(∆θ)

2π
= r · ∆θ · ∆r
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Examples
Evaluate the double integral∫∫

R

ln(
√

x2 + y 2)

x2 + y 2
dA where R is the region

in the first quadrant between the unit circle
x2 + y 2 = 1 and the circle of radius e,
x2 + y 2 = e2, that is shown below.
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Examples, II
Evaluate the double integral

∫∫

R

6y dA

where R is the region in the first quadrant
bounded above by the circle (x − 1)2 + y 2 = 1
and below by the line y = x .
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Examples, III
Use polar coordinates to find the volume of the
solid between the paraboloid

z = 3x2 + 3y 2

and the circular cone

z = 6
√

x2 + y 2
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Examples IV
Evaluate the double integral

∫ 1

0

∫ √
1−x2

0

1√
(x2 + y 2) tan−1(y/x)

dy dx
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